Map-Based Precision Vehicle Localization in Urban Environments

نویسندگان

  • Jesse Levinson
  • Michael Montemerlo
  • Sebastian Thrun
چکیده

Many urban navigation applications (e.g., autonomous navigation, driver assistance systems) can benefit greatly from localization with centimeter accuracy. Yet such accuracy cannot be achieved reliably with GPS-based inertial guidance systems, specifically in urban settings. We propose a technique for high-accuracy localization of moving vehicles that utilizes maps of urban environments. Our approach integrates GPS, IMU, wheel odometry, and LIDAR data acquired by an instrumented vehicle, to generate high-resolution environment maps. Offline relaxation techniques similar to recent SLAM methods [2, 10, 13, 14, 21, 30] are employed to bring the map into alignment at intersections and other regions of self-overlap. By reducing the final map to the flat road surface, imprints of other vehicles are removed. The result is a 2-D surface image of ground reflectivity in the infrared spectrum with 5cm pixel resolution. To localize a moving vehicle relative to these maps, we present a particle filter method for correlating LIDAR measurements with this map. As we show by experimentation, the resulting relative accuracies exceed that of conventional GPS-IMU-odometry-based methods by more than an order of magnitude. Specifically, we show that our algorithm is effective in urban environments, achieving reliable real-time localization with accuracy in the 10centimeter range. Experimental results are provided for localization in GPS-denied environments, during bad weather, and in dense traffic. The proposed approach has been used successfully for steering a car through narrow, dynamic urban roads.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Global Urban Localization Based on Road Maps

This paper presents a method to perform global localization in urban environments using segment-based maps in combination with particle filters. In the proposed approach the likelihood function is generated as a grid, derived from segment-based maps. The scheme can efficiently assign weights to the particles in real time, with minimum memory requirements and without any additional pre-filtering...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

To the Bookstore! Autonomous Wheelchair Navigation in an Urban Environment

In this paper, we demonstrate reliable navigation of a smart wheelchair system (SWS) in an urban environment. Urban environments present unique challenges for service robots. They require localization accuracy at the sidewalk level, but compromise GPS position estimates through significant multi-path effects. However, they are also rich in landmarks that can be leveraged by feature-based locali...

متن کامل

Real-time hierarchical stereo Visual SLAM in large-scale environments

In this paper we present a new real-time hierarchical (topological/metric) Visual SLAM system focusing on the localization of a vehicle in large-scale outdoor urban environments. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divides the whole map into local sub-maps identified by the so-called fingerprints (vehicle poses). At the su...

متن کامل

Semantics for UGV Registration in GPS-denied Environments

Localization in a global map is critical to success in many autonomous robot missions. This is particularly challenging for multi-robot operations in unknown and adverse environments. Here, we are concerned with providing a small unmanned ground vehicle (UGV) the ability to localize itself within a 2.5D aerial map generated from imagery captured by a low-flying unmanned aerial vehicle (UAV). We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007